Large-scale ranking and selection (R&S), which aims to select the best alternative with the largest mean performance from a finite set of alternatives, has emerged as an important research topic in simulation optimization. Ideal large-scale R&S procedures should be rate optimal, i.e., the total sample size required to deliver an asymptotically non-zero probability of correct selection (PCS) grows at the minimal rate (linear rate) in the number of alternatives. Surprisingly, we discover that the na\"ive greedy procedure that keeps sampling the alternative with the largest running average performs strikingly well and appears rate optimal. To understand this discovery, we develop a new boundary-crossing perspective and prove that the greedy procedure is indeed rate optimal. We further show that the derived PCS lower bound is asymptotically tight for the slippage configuration of means with a common variance. Moreover, we propose the explore-first greedy (EFG) procedure and its enhanced version ($\mbox{EFG}^+$ procedure) by adding an exploration phase to the na\"ive greedy procedure. Both procedures are proven to be rate optimal and consistent. Last, we conduct extensive numerical experiments to empirically understand the performance of our greedy procedures in solving large-scale R&S problems.


翻译:大型排名和甄选(R&S)旨在从一组有限的替代物中选择最优的替代物,目的是从其中选择最优的平均性能,它已成为模拟优化中的一个重要研究课题。理想的大规模研发程序应该是最佳的率,也就是说,提供非随机非零正确选择(PCS)所需的总样本规模以替代物数量的最小速率(线性率)增长。令人惊讶的是,我们发现,一直以最大运行平均值取样替代物的“贪婪”程序非常出色,看来是最佳的。为了理解这一发现,我们制定了一个新的跨边界观点,并证明贪婪程序确实是最佳的。我们进一步表明,衍生的PCS的下限规模对于手段的滑落配置来说,与常见差异相比,是同样紧迫的。此外,我们建议探索第一贪婪程序及其强化版(mboxenbox{EFG<unk> $ procal),方法是将探索阶段添加到最大运行贪婪程序之中。两种程序都证明我们最优化和最一致的实验和大规模地解决我们的贪婪程序。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员