Overfitting is a problem in Convolutional Neural Networks (CNN) that causes poor generalization of models on unseen data. To remediate this problem, many new and diverse data augmentation methods (DA) have been proposed to supplement or generate more training data, and thereby increase its quality. In this work, we propose a new data augmentation algorithm: VoronoiPatches (VP). We primarily utilize non-linear recombination of information within an image, fragmenting and occluding small information patches. Unlike other DA methods, VP uses small convex polygon-shaped patches in a random layout to transport information around within an image. Sudden transitions created between patches and the original image can, optionally, be smoothed. In our experiments, VP outperformed current DA methods regarding model variance and overfitting tendencies. We demonstrate data augmentation utilizing non-linear re-combination of information within images, and non-orthogonal shapes and structures improves CNN model robustness on unseen data.
翻译:在进化神经网络(CNN)中,过度配置是一个问题,它造成对不可见数据模型的不合理概括化。为了补救这一问题,提出了许多新的和多样化的数据增强方法(DA),以补充或生成更多的培训数据,从而提高其质量。在这项工作中,我们提出了一个新的数据增强算法:VoronoiPatches(VPP),我们主要使用图像中非线性信息重组、碎片化和小型信息补丁。与DA的其他方法不同,VP在随机布局中使用小锥形多边形补丁,在图像中传输信息。在补丁和原始图像之间创建的突变,可以选择地平滑。在我们的实验中,VP在模型差异和过度适应趋势方面优于目前的DA方法。我们用非线性图像内信息重组来显示数据增强,非线性重组,以及非线性形状和结构改进CNN对看不见数据的模型的坚固性。