Vision Transformers (ViTs) that leverage self-attention mechanism have shown superior performance on many classical vision tasks compared to convolutional neural networks (CNNs) and gain increasing popularity recently. Existing ViTs works mainly optimize performance and accuracy, but ViTs reliability issues induced by hardware faults in large-scale VLSI designs have generally been overlooked. In this work, we mainly study the reliability of ViTs and investigate the vulnerability from different architecture granularities ranging from models, layers, modules, and patches for the first time. The investigation reveals that ViTs with the self-attention mechanism are generally more resilient on linear computing including general matrix-matrix multiplication (GEMM) and full connection (FC), and show a relatively even vulnerability distribution across the patches. However, ViTs involve more fragile non-linear computing such as softmax and GELU compared to typical CNNs. With the above observations, we propose an adaptive algorithm-based fault tolerance algorithm (ABFT) to protect the linear computing implemented with distinct sizes of GEMM and apply a range-based protection scheme to mitigate soft errors in non-linear computing. According to our experiments, the proposed fault-tolerant approaches enhance ViT accuracy significantly with minor computing overhead in presence of various soft errors.


翻译:在这项工作中,我们主要研究VLSI的可靠性,并首次调查模型、层、模块和补丁等不同结构颗粒的脆弱性。调查显示,与进化神经网络相比,与进化神经网络相比,现有VIT在许多古典视觉任务上表现优异,最近越来越受欢迎。现有的VIT主要优化性能和准确性,但大规模VLSI设计硬件缺陷引发的VIT可靠性问题通常被忽视。在这项工作中,我们主要研究VIT的可靠性,并首次调查模型、层、模块和补丁等不同结构颗粒的脆弱性。调查显示,与自备机制相比,VIT在线性计算(包括通用矩阵矩阵倍增)和完全连接(FC)方面一般具有更强的弹性,并显示出相对均衡的跨补差分布。然而,VIT涉及较脆弱的非线性计算,如软式成和GELU等。我们提出了基于适应性算法的错误容忍算法算法(ABFT),以保护以不同尺寸实施的直线性计算,并应用基于范围的保护计划来减轻非线性计算方法中的软性误差,从而大幅改进了各种软式计算。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey of Large Language Models
Arxiv
7+阅读 · 2023年4月12日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
103+阅读 · 2021年6月8日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
A Survey of Large Language Models
Arxiv
7+阅读 · 2023年4月12日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
103+阅读 · 2021年6月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员