Intelligent reflecting surface (IRS) is a promising technology to improve the performance of backscatter communication systems by smartly reconfiguring the multi-reflection channel. To fully exploit the passive beamforming gain of IRS in backscatter communication, channel state information (CSI) is indispensable but more practically challenging to acquire than conventional IRS-assisted systems, since IRS passively reflects signals over both the forward and backward (backscattering) links between the reader and tag. To address this issue, we propose in this letter a new and efficient channel estimation scheme for the IRS-assisted backscatter communication system. To minimize the mean-square error (MSE) of channel estimation, we formulate and solve an optimization problem by designing the IRS training reflection matrix for channel estimation under the constraints of unit-modulus elements and full rank. Simulation results verify the effectiveness of the proposed channel estimation scheme as compared to other baseline schemes.
翻译:智能反射表面(IRS)是一种大有希望的技术,通过对多反射信道进行精巧的重新配置来改进后向散射通信系统的性能。要充分利用IRS在后向散射通信中的被动波束增益,频道状态信息(CSI)比常规的IRS辅助系统更不可或缺,但比常规的IRS辅助系统更难以获取,因为IRS被动地反映了读者和标签之间前向和后向(后向)链接的信号。为了解决这一问题,我们在信中提议为IRS协助的后向散射通信系统制定一个新的高效的频道估计计划。为了尽可能减少频道估计的中差,我们制定并解决了优化的问题,在单位模量元素和完整等级的限制下设计了IRS通道估计培训思考矩阵。模拟结果验证了拟议的频道估计计划与其他基线计划相比的有效性。