An interactive error correcting code ($\mathsf{iECC}$) is an interactive protocol with the guarantee that the receiver can correctly determine the sender's message, even in the presence of noise. This generalizes the concept of an error correcting code ($\mathsf{ECC}$), which is a non-interactive $\mathsf{iECC}$ that is known to have erasure resilience capped at $\frac12$. The work of \cite{GuptaTZ21} constructed the first $\mathsf{iECC}$ resilient to $> \frac12$ adversarial erasures. However, their $\mathsf{iECC}$ has communication complexity quadratic in the message size. In our work, we construct the first positive rate $\mathsf{iECC}$ resilient to $> \frac12$ adversarial erasures. For any $\epsilon > 0$, our $\mathsf{iECC}$ is resilient to $\frac6{11} - \epsilon$ adversarial erasures and has size $O_\epsilon(n)$.
翻译:互动错误校正代码 ($\ mathsf{ iECC}$) 是一个互动协议, 保证接收者即使在有噪音的情况下也能正确确定发件人的信息。 这概括了校正代码 ($\ mathsf{ ECC}$) 的错误概念, 这是非互动 $\ mathsf{ iECC} $, 众所周知, 以 $\ farac2. 来消除抗御能力上限。\ cite{ GuptaTZ21} 的工作是交互式协议, 保证接收者即使在有噪音的情况下也能正确确定发送人的信息。 但是, 他们的 $\ mathsf{ EC} 概念在信息大小上具有通信复杂性的四边形。 在我们的工作中, 我们构建第一个正率 $\ mathsf{ { iEC} 以 $ 折合$ >\ farac12$ 。 对于任何 $\ epslon > 0, 我们的美元\ mathsf{ EC} $ 和 $\\\\\\ laimal as ylus yal as as as as as asylage * $ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx