The data-embedding process is one of the bottlenecks of quantum machine learning, potentially negating any quantum speedups. In light of this, more effective data-encoding strategies are necessary. We propose a photonic-based bosonic data-encoding scheme that embeds classical data points using fewer encoding layers and circumventing the need for nonlinear optical components by mapping the data points into the high-dimensional Fock space. The expressive power of the circuit can be controlled via the number of input photons. Our work shed some light on the unique advantages offers by quantum photonics on the expressive power of quantum machine learning models. By leveraging the photon-number dependent expressive power, we propose three different noisy intermediate-scale quantum-compatible binary classification methods with different scaling of required resources suitable for different supervised classification tasks.
翻译:数据组合过程是量子机器学习的瓶颈之一,有可能否定任何量子加速。 有鉴于此, 需要更有效的数据编码策略。 我们提议了一个基于光子的bosonic数据编码计划, 将古典数据点嵌入使用较少的编码层, 通过将数据点绘制到高维Fock空间, 从而避免对非线性光学组件的需求。 电路的表达力可以通过输入光子的数量来控制。 我们的工作揭示了量子光学对量子机器学习模型的表达力的独特优势。 通过利用光子数量依赖的表达力, 我们提议了三种不同的吵动中尺度的量相容二元分类方法, 以及适合于不同监督分类任务的不同比例的所需资源。