Given a unitary transformation, what is the size of the smallest quantum circuit that implements it? This quantity, known as the quantum circuit complexity, is a fundamental property of quantum evolutions that has widespread applications in many fields, including quantum computation, quantum field theory, and black hole physics. In this letter, we obtain a new lower bound for the quantum circuit complexity in terms of a novel complexity measure that we propose for quantum circuits, which we call the quantum Wasserstein complexity. Our proposed measure is based on the quantum Wasserstein distance of order one (also called the quantum earth mover's distance), a metric on the space of quantum states. We also prove several fundamental and important properties of our new complexity measure, which stand to be of independent interest. Finally, we show that our new measure also provides a lower bound for the experimental cost of implementing quantum circuits, which implies a quantum limit on converting quantum resources to computational resources. Our results provide novel applications of the quantum Wasserstein distance and pave the way for a deeper understanding of the resources needed to implement a quantum computation.
翻译:在一个单一的变换中, 最小量子电路的大小是多少? 这个数量, 被称为量子电路的复杂性, 是量子进化的基本属性, 它在许多领域, 包括量子计算、 量子场理论和黑洞物理中广泛应用。 使用此信, 我们获得了一个新的量子电路复杂性下限。 我们为量子电路建议了一种新的复杂度量子电路, 我们称之为量子瓦瑟斯坦复杂度量子。 我们提出的量子量子电路( 也称为量子地球移动器的距离) 的距离, 是量子状态空间的尺度。 我们还证明了我们新的复杂度量子的几种基本和重要特性, 而这些特性是独立的。 最后, 我们显示我们的新度量子电路的实验成本, 意味着将量子资源转换为计算资源的量子值限制。 我们的结果提供了量子瓦瑟斯坦距离的新应用, 为更深入了解量子计算所需要的资源铺平了道路。