Starting from a contact Hamiltonian description of Li\'enard systems, we introduce a new family of explicit geometric integrators for these nonlinear dynamical systems. Focusing on the paradigmatic example of the van der Pol oscillator, we demonstrate that these integrators are particularly stable and preserve the qualitative features of the dynamics, even for relatively large values of the time step and in the stiff regime.
翻译:我们从接触汉密尔顿对Li\'enard系统的描述开始,为这些非线性动态系统引入了一个由明确的几何集成器组成的新组合。 我们关注范德尔波尔振荡器的范德波尔振荡器范例,我们证明这些集成器特别稳定,并保持了动态的质量特征,即使是相对较大的时间步骤值和坚固的系统。