Weighted Bloom filters (Bruck, Gao and Jiang, ISIT 2006) are Bloom filters that adapt the number of hash functions according to the query element. That is, they use a sequence of hash functions $h_1, h_2, \dots$ and insert $x$ by setting the bits in $k_x$ positions $h_1(x), h_2(x), \dots, h_{k_x}(x)$ to 1, where the parameter $k_x$ depends on $x$. Similarly, a query for $x$ checks whether the bits at positions $h_1(x), h_2(x), \dots, h_{k_x}(x)$ contain a $0$ (in which case we know that $x$ was not inserted), or contains only $1$s (in which case $x$ may have been inserted, but it could also be a false positive). In this paper, we determine a near-optimal choice of the parameters $k_x$ in a model where $n$ elements are inserted independently from a probability distribution $\mathcal{P}$ and query elements are chosen from a probability distribution $\mathcal{Q}$, under a bound on the false positive probability $F$. In contrast, the parameter choice of Bruck et al., as well as follow-up work by Wang et al., does not guarantee a nontrivial bound on the false positive rate. We refer to our parameterization of the weighted Bloom filter as a $\textit{Daisy Bloom filter}$. For many distributions $\mathcal{P}$ and $\mathcal{Q}$, the Daisy Bloom filter space usage is significantly smaller than that of Standard Bloom filters. Our upper bound is complemented with an information-theoretical lower bound, showing that (with mild restrictions on the distributions $\mathcal{P}$ and $\mathcal{Q}$), the space usage of Daisy Bloom filters is the best possible up to a constant factor. Daisy Bloom filters can be seen as a fine-grained variant of a recent data structure of Vaidya, Knorr, Mitzenmacher and Kraska. Like their work, we are motivated by settings in which we have prior knowledge of the workload of the filter, possibly in the form of advice from a machine learning algorithm.


翻译:(bruck, Gao和Jiang, ISIT, 2006) 是Bloom 过滤器, 可以根据查询元素调整散列函数的数量。 也就是说, 它们使用h_ 1, h_ 2,\dots 美元, 插入美元x美元, 将位数设置在 $_x, h_x, h_x, \dots 美元到 1 美元, 其中参数为 美元xx 。 同样, 查询 $x 美元是否根据查询值调整散列函数数量。 也就是说, 它们使用h_ 1, h_ 2, 美元, 美元, 并插入 美元, 插入美元xx, 插入美元xxx, 插入美元xxxx 美元, 插入美元xxx 美元, 以1美元为美元, 以 美元, 以更低的空域值为准。 在本文中, 我们确定在模型中选择 美元xal_xal, 美元, 以美元为正值, 以正值 美元 美元 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员