Generative adversarial networks (GANs) have shown promising results when applied on partial differential equations and financial time series generation. We investigate if GANs can also be used to approximate one-dimensional Ito stochastic differential equations (SDEs). We propose a scheme that approximates the path-wise conditional distribution of SDEs for large time steps. Standard GANs are only able to approximate processes in distribution, yielding a weak approximation to the SDE. A conditional GAN architecture is proposed that enables strong approximation. We inform the discriminator of this GAN with the map between the prior input to the generator and the corresponding output samples, i.e. we introduce a `supervised GAN'. We compare the input-output map obtained with the standard GAN and supervised GAN and show experimentally that the standard GAN may fail to provide a path-wise approximation. The GAN is trained on a dataset obtained with exact simulation. The architecture was tested on geometric Brownian motion (GBM) and the Cox-Ingersoll-Ross (CIR) process. The supervised GAN outperformed the Euler and Milstein schemes in strong error on a discretisation with large time steps. It also outperformed the standard conditional GAN when approximating the conditional distribution. We also demonstrate how standard GANs may give rise to non-parsimonious input-output maps that are sensitive to perturbations, which motivates the need for constraints and regularisation on GAN generators.
翻译:当应用部分差异方程式和财务时间序列生成时,生成的对抗性网络(GANs)显示了有希望的结果。我们调查GANs是否也可以用于大约一维Ito随机差异方程式(SDEs) 。我们建议了一个方案,以路径相近的方式有条件分配SDEs(大时间步骤) 。标准GANs只能接近分布过程,从而向SDE产生微弱的近似效果。建议了一个有条件的GAN结构,能够进行强有力的近似。我们用先前输入发电机和相应输出样本之间的地图向这个GAN的导师通报这个GAN,即我们引入一个“超级GAN”的限制。我们将获得的输入-输出方程式与标准GAN(GANs)比较并监督GANs(GANs),并实验性地显示标准GANs(SAN)可能无法提供路径近似近。GANs(GAN)只能通过精确的模拟对数据集进行训练。该结构是用几何Brown Brownian运动(GBM)和C-In-In-An-Rols(CIR)的地图(C)的精细化过程也显示GANs-imeral-imeral)的硬化GANseralimal-deal 需要一个不精确的硬化过程。它在最精确的精确的模型上显示硬化过程,在最精确的精确的精确的精确度上显示。