In this paper, we consider static parameter estimation for a class of continuous-time state-space models. Our goal is to obtain an unbiased estimate of the gradient of the log-likelihood (score function), which is an estimate that is unbiased even if the stochastic processes involved in the model must be discretized in time. To achieve this goal, we apply a doubly randomized scheme, that involves a novel coupled conditional particle filter (CCPF) on the second level of randomization. Our novel estimate helps facilitate the application of gradient-based estimation algorithms, such as stochastic-gradient Langevin descent. We illustrate our methodology in the context of stochastic gradient descent (SGD) in several numerical examples and compare with the Rhee & Glynn estimator.
翻译:在本文中,我们考虑对一组连续时间状态-空间模型进行静态参数估计。 我们的目标是获得对日志相似度(核心函数)梯度的公正估计,这一估计是不带偏见的,即使模型所涉及的随机过程必须及时分离。 为了实现这一目标,我们采用一个双重随机方案,在第二层随机化中采用一种新颖的附加有条件粒子过滤器(CCPF ) 。 我们的新估计有助于应用基于梯度的估计算法,例如随机梯度梯度的兰格文血统。 我们在若干数字例子中介绍了我们采用的方法,并与Rhee & Glynnestator比较。