In this work, we study Unsupervised Domain Adaptation (UDA) in a challenging self-supervised approach. One of the difficulties is how to learn task discrimination in the absence of target labels. Unlike previous literature which directly aligns cross-domain distributions or leverages reverse gradient, we propose Domain Confused Contrastive Learning (DCCL) to bridge the source and the target domains via domain puzzles, and retain discriminative representations after adaptation. Technically, DCCL searches for a most domain-challenging direction and exquisitely crafts domain confused augmentations as positive pairs, then it contrastively encourages the model to pull representations towards the other domain, thus learning more stable and effective domain invariances. We also investigate whether contrastive learning necessarily helps with UDA when performing other data augmentations. Extensive experiments demonstrate that DCCL significantly outperforms baselines.


翻译:在这项工作中,我们以具有挑战性的自我监督方法研究无人监督的域适应(UDA) 。 困难之一是如何在没有目标标签的情况下学习任务歧视。 与以往直接对跨域分布进行对齐或利用反向梯度的文献不同,我们提议Doline Confredtive Contracting Learning(DCCL)通过域拼图连接源和目标领域,并在适应后保留有区别的表述。 从技术上讲,DCCLL寻找一个最具领域挑战性的方向和精巧的手工艺域,将增强部分混为正对,然后相反地鼓励模型将表达方式拉动到另一个领域,从而学习更加稳定和有效的变异性域。 我们还调查对比学习是否必然有助于UDA在进行其他数据增强时对数据产生影响。 广泛的实验表明DCCL大大超过基线。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年9月2日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员