This paper describes our submission for the SemEval-2019 Suggestion Mining task. A simple Convolutional Neural Network (CNN) classifier with contextual word representations from a pre-trained language model was used for sentence classification. The model is trained using tri-training, a semi-supervised bootstrapping mechanism for labelling unseen data. Tri-training proved to be an effective technique to accommodate domain shift for cross-domain suggestion mining (Subtask B) where there is no hand labelled training data. For in-domain evaluation (Subtask A), we use the same technique to augment the training set. Our system ranks thirteenth in Subtask A with an $F_1$-score of 68.07 and third in Subtask B with an $F_1$-score of 81.94.


翻译:本文介绍了我们对SemEval-2019建议采矿任务的呈件。在量刑分类中使用了一个简单的进化神经网络分类器,该分类器具有来自预先培训的语言模式的背景文字说明。该模型使用三重训练(一种半监督的隐性数据标签跟踪机制)进行培训。三重训练被证明是一种有效的技术,用于在没有手标培训数据的情况下进行跨界建议采矿(Subtask B)的域转移。在现场评估(Subtask A)中,我们使用同样的技术来扩大培训内容。我们的系统在Subtask A中排名第十三,在Subtask B中排名第13位,在Suptask中排名68.07美元,在Subtask B中排名第三,在81.94美元中排名F_1美元。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员