In this paper we study online change point detection in dynamic networks with heterogeneous missing pattern across the networks and the time course. The missingness probabilities, the networks' entrywise sparsity, the rank of the networks and the jump size in terms of the Frobenius norm, are all allowed to vary as functions of the pre-change sample size. To the best of our knowledge, such general framework has not been rigorously studied before in the literature. We propose a polynomial-time change point detection algorithm, with a version of soft-impute algorithm (Mazumder et al., 2010; Klopp, 2015) as the imputation sub-routine. We investigate the fundamental limits of this problem and show that the detection delay of our algorithm is nearly optimal, saving for logarithmic factors, in some low-rank regimes, with a pre-specified tolerance on the probability of false alarms. Extensive numerical experiments are conducted demonstrating the outstanding performances of our proposed method in practice.
翻译:在本文中,我们研究网络和时间过程之间不同模式的动态网络的在线变化点探测。 缺失概率、 网络的入点宽度、 网络的级别以及Frobenius 规范的跳跃大小都允许随着变化前样本大小的功能而变化。 据我们所知,这种总体框架在文献中从未进行过严格研究。 我们建议采用多纪念时间变化点检测算法, 以软简化算法( Mazumder et al., 2010; Klopp, 2015) 的版本作为内流子例程。 我们调查了这一问题的基本限度, 并表明我们算法的检测延迟几乎是最佳的, 节省了一些低级制度的对数因素, 并预先确定了对虚假警报概率的容忍度。 我们进行了广泛的数字实验, 展示了我们拟议方法的实际出色表现。