(Non-)robustness of neural networks to small, adversarial pixel-wise perturbations, and as more recently shown, to even random spatial transformations (e.g., translations, rotations) entreats both theoretical and empirical understanding. Spatial robustness to random translations and rotations is commonly attained via equivariant models (e.g., StdCNNs, GCNNs) and training augmentation, whereas adversarial robustness is typically achieved by adversarial training. In this paper, we prove a quantitative trade-off between spatial and adversarial robustness in a simple statistical setting. We complement this empirically by showing that: (a) as the spatial robustness of equivariant models improves by training augmentation with progressively larger transformations, their adversarial robustness worsens progressively, and (b) as the state-of-the-art robust models are adversarially trained with progressively larger pixel-wise perturbations, their spatial robustness drops progressively. Towards achieving pareto-optimality in this trade-off, we propose a method based on curriculum learning that trains gradually on more difficult perturbations (both spatial and adversarial) to improve spatial and adversarial robustness simultaneously.


翻译:神经网络对小型的、对抗性像素的扰动(非)强势网络对小型的、对抗性像素的扰动,以及最近显示的甚至随机的空间转换(如翻译、旋转)对理论和经验的理解。随机翻译和旋转的空间强度通常是通过等同模型(如StdCNNs、GCNNs)和培训增强实现的,而对抗性强力通常是通过对抗性培训实现的。在本文中,我们证明在一个简单的统计环境中空间强力和对抗性强力之间的量化权衡。我们通过展示以下事实来补充这一经验:(a)随着等异模式的空间稳健性通过培训的增强而提高,随着逐渐扩大的转变,其对抗性强力和旋转通常通过等异模式(如StdCNNs、GCNNs)和培训增强而实现,而敌对性强力通常通过对抗性强势性培训而通过对抗性强势性培训,而对抗性强健性通常通过对抗性强势训练来实现。在简单统计环境中实现接近性强健度之间的平衡。我们提出一种基于空间对抗性和对抗性逐步提高空间对抗性学习空间对抗性的方法。

0
下载
关闭预览

相关内容

计算机视觉对抗攻击综述论文,35页pdf456篇文献
专知会员服务
63+阅读 · 2021年9月4日
专知会员服务
25+阅读 · 2021年8月11日
【AAAI2021】组合对抗攻击
专知会员服务
50+阅读 · 2021年2月17日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
9+阅读 · 2020年10月29日
Arxiv
4+阅读 · 2019年11月21日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员