The paper considers a thermodynamically consistent phase-field model of a two-phase flow of incompressible viscous fluids. The model allows for a non-linear dependence of fluid density on the phase-field order parameter. Driven by applications in biomembrane studies, the model is written for tangential flows of fluids constrained to a surface and consists of (surface) Navier-Stokes-Cahn-Hilliard type equations. We apply an unfitted finite element method to discretize the system and introduce a fully discrete time-stepping scheme with the following properties: (i) the scheme decouples the fluid and phase-field equation solvers at each time step, (ii) the resulting two algebraic systems are linear, and (iii) the numerical solution satisfies the same stability bound as the solution of the original system under some restrictions on the discretization parameters. Numerical examples are provided to demonstrate the stability, accuracy, and overall efficiency of the approach. Our computational study of several two-phase surface flows reveals some interesting dependencies of flow statistics on the geometry.
翻译:本文考虑的是两阶段压缩粘结性流体流动的热动力一致的相位模型。 该模型允许对阶段-实地定序参数的液体密度的非线性依赖性。 该模型由生物成形研究的应用驱动,用于受表面限制的流体流体的相近性流,由(表层)纳维埃-斯托克斯-卡恩-希利亚德型方程式组成。我们采用了不合适的有限元素元件方法将系统分解,并引入一个完全离散的时间分步办法,其特性如下:(一) 方案在每步分解流体和阶段-实地等式解器,(二) 由此产生的两个代数系统是线性的,以及(三) 数字解决方案与在离散参数的某些限制下最初系统的解决办法具有同样的稳定性。提供了数字实例,以证明该方法的稳定性、准确性和总体效率。我们对若干两阶段地表流的计算研究显示,几处的流量统计数据具有某种有趣的依赖性。