Keyphrase Prediction (KP) task aims at predicting several keyphrases that can summarize the main idea of the given document. Mainstream KP methods can be categorized into purely generative approaches and integrated models with extraction and generation. However, these methods either ignore the diversity among keyphrases or only weakly capture the relation across tasks implicitly. In this paper, we propose UniKeyphrase, a novel end-to-end learning framework that jointly learns to extract and generate keyphrases. In UniKeyphrase, stacked relation layer and bag-of-words constraint are proposed to fully exploit the latent semantic relation between extraction and generation in the view of model structure and training process, respectively. Experiments on KP benchmarks demonstrate that our joint approach outperforms mainstream methods by a large margin.
翻译:关键词句预测(KP)任务旨在预测几个关键词句,这些关键词句可以总结给定文件的主要概念。 主流 KP 方法可以分为纯粹的基因化方法和集成的提取和生成模型。 但是,这些方法要么忽视了关键词句的多样性,要么只是暗含地暗含地中淡化了各项任务之间的关系。 在本文中,我们提议 UniKey shand, 是一个新的端对端学习框架, 共同学习提取和生成关键词句。 在 UnKey 句中, 提议将堆叠关系层和词包限制分别用于充分利用提取和生成之间的潜在语义关系, 以便从模型结构和培训过程来看。 有关KP 基准的实验表明,我们共同的方法大大超越了主流方法。