Computing-in-Memory (CIM) has shown great potential for enhancing efficiency and performance for deep neural networks (DNNs). However, the lack of flexibility in CIM leads to an unnecessary expenditure of computational resources on less critical operations, and a diminished Signal-to-Noise Ratio (SNR) when handling more complex tasks, significantly hindering the overall performance. Hence, we focus on the integration of CIM with Saliency-Aware Computing -- a paradigm that dynamically tailors computing precision based on the importance of each input. We propose On-the-fly Saliency-Aware Hybrid CIM (OSA-HCIM) offering three primary contributions: (1) On-the-fly Saliency-Aware (OSA) precision configuration scheme, which dynamically sets the precision of each MAC operation based on its saliency, (2) Hybrid CIM Array (HCIMA), which enables simultaneous operation of digital-domain CIM (DCIM) and analog-domain CIM (ACIM) via split-port 6T SRAM, and (3) an integrated framework combining OSA and HCIMA to fulfill diverse accuracy and power demands. Implemented on a 65nm CMOS process, OSA-HCIM demonstrates an exceptional balance between accuracy and resource utilization. Notably, it is the first CIM design to incorporate a dynamic digital-to-analog boundary, providing unprecedented flexibility for saliency-aware computing. OSA-HCIM achieves a 1.95x enhancement in energy efficiency, while maintaining minimal accuracy loss compared to DCIM when tested on CIFAR100 dataset.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员