Point cloud analysis is challenging due to the irregularity of the point cloud data structure. Existing works typically employ the ad-hoc sampling-grouping operation of PointNet++, followed by sophisticated local and/or global feature extractors for leveraging the 3D geometry of the point cloud. Unfortunately, the sampling-grouping operations do not address the point cloud's irregularity, whereas the intricate local and/or global feature extractors led to poor computational efficiency. In this paper, we introduce a novel DualNorm module after the sampling-grouping operation to effectively and efficiently address the irregularity issue. The DualNorm module consists of Point Normalization, which normalizes the grouped points to the sampled points, and Reverse Point Normalization, which normalizes the sampled points to the grouped points. The proposed framework, PointNorm, utilizes local mean and global standard deviation to benefit from both local and global features while maintaining a faithful inference speed. Experiments show that we achieved excellent accuracy and efficiency on ModelNet40 classification, ScanObjectNN classification, ShapeNetPart Part Segmentation, and S3DIS Semantic Segmentation. Code is available at https://github.com/ShenZheng2000/PointNorm-for-Point-Cloud-Analysis.
翻译:由于点云数据结构的不规则性,点云分析具有挑战性。现有工作通常采用点Net++的特设取样组作业,然后是精密的地方和/或全球地物提取器,以利用点云的三维几何学。不幸的是,取样组作业没有解决点云的不规则性,而复杂的地方和/或全球地物提取器则导致计算效率低下。在本文件中,我们引入了一个在取样组作业之后的新颖的双重诺姆模块,以有效和高效地解决不规范问题。双诺姆模块包括点正常化,将组点与抽样点正常化,以及反点正常化,使抽样点与组点正常化。拟议的框架,即点诺姆,利用地方和全球标准偏差,从当地和全球的特征中获益,同时保持可靠的推断速度。实验显示,我们在模型Net40分类、扫描ObjectNNC分类、ShapeNetPart Part Part和S3DIS-Sqrus-Squalimation/Sqivard-Nqivar-Squal-Squalation/Sqivalation/Squalation)上我们可使用的代码。