Low-light stereo image enhancement (LLSIE) is a relatively new task to enhance the quality of visually unpleasant stereo images captured in dark conditions. So far, very few studies on deep LLSIE have been explored due to certain challenging issues, i.e., the task has not been well addressed, and current methods clearly suffer from two shortages: 1) insufficient cross-view interaction; 2) lacking long-range dependency for intra-view learning. In this paper, we therefore propose a novel LLSIE model, termed \underline{Suf}ficient C\underline{r}oss-View \underline{In}teraction Network (SufrinNet). To be specific, we present sufficient inter-view interaction module (SIIM) to enhance the information exchange across views. SIIM not only discovers the cross-view correlations at different scales, but also explores the cross-scale information interaction. Besides, we present a spatial-channel information mining block (SIMB) for intra-view feature extraction, and the benefits are twofold. One is the long-range dependency capture to build spatial long-range relationship, and the other is expanded channel information refinement that enhances information flow in channel dimension. Extensive experiments on Flickr1024, KITTI 2012, KITTI 2015 and Middlebury datasets show that our method obtains better illumination adjustment and detail recovery, and achieves SOTA performance compared to other related methods. Our codes, datasets and models will be publicly available.
翻译:低光立体图像增强( LLISIE) 是提高在黑暗条件下拍摄的视觉上令人不愉快的立体图像质量的相对较新任务。 到目前为止,由于某些具有挑战性的问题,对深 LLSIE的探索很少,例如,任务没有很好地处理,目前的方法明显存在两个短缺:(1) 交叉互动不足;(2) 缺乏对视内学习的长期依赖性。 此外,我们为此提议了一个名为下线{SUFIE}法的新型LSIE模型(SIMB),称为“下线{SUFT}法的C\underline{rws-View aunderline{Indline{InteractionNet Net ” (SufrinNet) 。具体地说,我们提出了关于深 LLSISIE的深视互动模块(SIIM)很少被探索,而目前的方法显然存在两个问题:即:一是建立空间远程关系的长期依赖性采集,二零二是加强跨视互动互动互动模块(SIIMMIS),而其他的平台则在2012年将改进SOILIT 和FlFLIT 上的数据分析方法。