This short technical report describes the approach submitted to the Clinical BCI Challenge-WCCI2020. This submission aims to classify motor imagery task from EEG signals and relies on Riemannian Geometry, with a twist. Instead of using the classical covariance matrices, we also rely on measures of functional connectivity. Our approach ranked 1st on the task 1 of the competition.
翻译:这份简短的技术报告描述了向临床BCI挑战-WCCI2020提交的方法,其目的是将机动图像任务从EEG信号中分类,并使用Riemannian几何方法进行扭曲。我们不使用传统的共变矩阵,而是依赖功能连接的测量。我们的方法在竞争任务1中排名第一。