Numerical methods for recovering ODE solutions from data largely rely on approximating the solutions using basis functions or kernel functions under a least square criterion. The accuracy of this approach hinges on the smoothness of the solutions. This paper provides a theoretical foundation for these methods by establishing novel results on the smoothness and covering numbers of ODE solution classes (as a measure of their "size"). Our results provide answers to "how do the degree of smoothness and the "size" of a class of ODEs affect the "size" of the associated class of solutions?" We show that: (1) for the first order ODEs, if the absolute values of all $k$th order derivatives are bounded by $1$, then the solution can end up with derivatives whose magnitude grows factorially fast - "a curse of smoothness"; (2) our upper bounds for the covering numbers of the $(\beta+2)-$degree smooth solution classes are greater than those of the "standard" $(\beta+2)-$degree smooth class of univariate functions; (3) the mean squared error of least squares fitting in noisy settings has a convergence rate no larger than $\left(\frac{1}{n}\right)^{\frac{2\left(\beta+2\right)}{2\left(\beta+2\right)+1}}$ if $n=\Omega\left(\left(\beta\sqrt{\log\left(\beta\vee1\right)}\right)^{4\beta+10}\right)$, and under this condition, the rate $\left(\frac{1}{n}\right)^{\frac{2\left(\beta+2\right)}{2\left(\beta+2\right)+1}}$ is minimax optimal in the case of $y^{'}\left(x\right)=f\left(x,\,y\left(x\right)\right)$; (4) more generally, for the higher order Picard type ODEs, $y^{\left(m\right)}\left(x\right)=f\left(x,\,y\left(x\right),\,y^{'}\left(x\right),\,...,y^{\left(m-1\right)}\left(x\right)\right)$, the covering number of the solution class is bounded above by the product of the covering number of the class $\mathcal{F}$ that $f$ ranges over and the covering number of the set where initial values lie.


翻译:从数据中恢复 ODE 解决方案的数值方法主要依赖于使用基函数或内核函数的近似平衡 。 此方法的准确性取决于解决方案的平滑性 。 此文件为这些方法提供了一个理论基础, 在光滑性上建立新结果, 覆盖 ODE 解决方案类别的数量( 作为“ 大小 ” 的度量 ) 。 我们的结果提供了“ 平滑度和某类 ODE 的“ 大小” 影响相关解决方案类的“ 规模 ”? 我们显示:(1) 第一顺序 值 $( 美元 ) 的绝对值 。 那么, 如果所有 美元 级衍生工具的绝对值被 $x 捆绑起来 。 那么, 解决方案的结局是: 平滑性 ; (2) 我们对于 美元 (\\\\\\\\\\\\\\\\\\\ 2) 度平滑性解析类的上限比“ 标准 $( \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员