t-distributed stochastic neighbor embedding (t-SNE) is a well-established visualization method for complex high-dimensional data. However, the original t-SNE method is nonparametric, stochastic, and often cannot well prevserve the global structure of data as it emphasizes local neighborhood. With t-SNE as a reference, we propose to combine the deep neural network (DNN) with the mathematical-grounded embedding rules for high-dimensional data embedding. We first introduce a deep embedding network (DEN) framework, which can learn a parametric mapping from high-dimensional space to low-dimensional embedding. DEN has a flexible architecture that can accommodate different input data (vector, image, or tensor) and loss functions. To improve the embedding performance, a recursive training strategy is proposed to make use of the latent representations extracted by DEN. Finally, we propose a two-stage loss function combining the advantages of two popular embedding methods, namely, t-SNE and uniform manifold approximation and projection (UMAP), for optimal visualization effect. We name the proposed method Deep Recursive Embedding (DRE), which optimizes DEN with a recursive training strategy and two-stage losse. Our experiments demonstrated the excellent performance of the proposed DRE method on high-dimensional data embedding, across a variety of public databases. Remarkably, our comparative results suggested that our proposed DRE could lead to improved global structure preservation.


翻译:(t-SNE)是复杂的高维数据嵌入(t-SNE)的成熟的可视化方法。然而,最初的 t-SNE方法是非参数性、随机性、往往无法在强调当地邻里时充分保护全球数据结构。我们建议,以t-SNE为参照,将深神经网络(DNNN)与高维数据嵌入的基于数学的嵌入规则结合起来。我们首先引入一个深嵌入网络(DEN)框架,它可以从高维空间到低维内嵌入一个参数性图解映射图。丹麦有一个灵活的结构,可以容纳不同的输入数据数据数据(Vactor、图像或高压数据)和损失功能。为了改进嵌入性功能,我们建议了一个循环培训战略,我们提出了一个分两个阶段的亏损功能,将两种广受欢迎的嵌入方法(即,t-SNENE)和统一的多维近和投影(UMAP)的优点结合起来,用于最佳的可视化效果。我们提议的深层再定位的、深层再定位和深层再定位系统化的系统化全球战略,我们提议的深度再定位。我们提议的“DREDREDREDIDADAD”将提出一个最佳的计算方法,我们提出的一个最佳的升级方法,我们提议的“深层”的深度的升级的升级的升级方法,可以优化。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Dynamic Principal Subspaces in High Dimensions
Arxiv
0+阅读 · 2021年6月2日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2020年2月5日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员