The approach for testing equal predictive accuracy for pairs of forecasting models proposed by Giacomini and White (2006) assumes that the parameters of the underlying forecasting models are estimated using a rolling window of fixed width and incorporates the effect of parameter estimation in the null hypothesis. We show that a necessary and sufficient condition for the conditionally expected loss differential of two forecasting models to be a martingale difference sequence is that the outcome is a simple average of the two forecasts. When the forecasts contain parameter estimation errors, this means that the conditional mean of the outcome has to be a function of past estimation errors--a condition that fails in many situations. We also show that the null can fail even in the absence of parameter estimation for many types of stochastic processes in common use.
翻译:Giacomini 和 White (2006年) 提出的对预测模型进行同等预测准确性测试的方法假定,基本预测模型的参数是使用固定宽度滚动窗口估计的,并将参数估计的影响纳入无效假设。我们证明,两个预测模型的有条件预期损失差数是马丁格尔差异序列的一个必要和充分的条件是,结果是两种预测的简单平均数。当预测含有参数估计误差时,这意味着结果的有条件平均值必须是过去估计误差的函数,而在许多情况下,这种误差是失败的。我们还表明,即使没有对共同使用的多种类随机过程进行参数估计,无效。