项目名称: 限域于介孔金属-有机框架内的金属纳米颗粒催化C-H活化反应的研究

项目编号: No.21273238

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 黄远标

作者单位: 中国科学院福建物质结构研究所

项目金额: 80万元

中文摘要: 从C-H键出发构建C-C键的形成是一条更加直接并且具有原子经济性的途径,是对环境友好的"绿色化学"过程。本项目拟采用自组装法、超分子模板法、后合成修饰法等制备骨架稳定的介孔金属-有机框架材料,并采用气相沉积法、溶液浸渍法等将单金属或合金纳米颗粒限域于其孔道中,进行催化C-H活化的研究,揭示制备介孔金属-有机框架材料和纳米粒子负载在其孔道中的规律,探索纳米颗粒催化C-H活化的反应条件、可循环使用性能,考察单金属或合金纳米颗粒与介孔金属-有机框架材料协同催化C-H活化的行为,阐明纳米催化剂在介孔金属-有机框架材料孔道内催化C-H活化的机制。本项目不仅拓展了金属-有机框架材料在催化领域的应用,而且可以节约催化剂生产成本、实现节能减排,是可持续发展的有效途径。

中文关键词: C-H 活化;金属-有机框架材料;金属纳米颗粒;催化;介孔

英文摘要: Direct transformation of a C-H bond into a C-C bond is a clean and atom-efficient method. In this project we will prepare mesoporous metal-organic frameworks materials using self-assembly, supramolecular templates and post-synthesis modification approaches. Highly dispersed metal nanoparticles or alloys encapsulated in the mesoporous pores or cages of metal-organic frameworks will be prepared using chemical vapor deposition and solution impregnation. The metal nanoparticles or alloys can be used as efficient catalysts for C-H activation. It will reveal the preparations disciplines of mesoporous metal-organic frameworks materials and introduction nanoparticles into the mesoporous pores or cages of metal-organic frameworks. The catalysis reaction conditions and recyclability properties of the metal nanoparticles catalysis for C-H activation will be explored. Synergistic catalysis for C-H activation of mesoporous metal-organic frameworks materials immobilized metal nanoparticles or alloys will be studied. The C-H activation mechanism catalyzed by the metal nanoparticles encapsulated in the mesoporous metal-organic frameworks materials will be clarified. The project expands metal-organic frameworks materials application in catalysis. And the effective sustainable development way which saves the catalyst production c

英文关键词: C-H Activation;Metal-Organic Framwork Materials;Metal Nanoparticles;Catalysis;Mesoporous

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
《人工智能安全框架(2020年)》白皮书,68页pdf
专知会员服务
164+阅读 · 2021年1月9日
专知会员服务
219+阅读 · 2020年8月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
《人工智能安全框架(2020年)》白皮书,68页pdf
专知会员服务
164+阅读 · 2021年1月9日
专知会员服务
219+阅读 · 2020年8月1日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员