For $\Delta \ge 5$ and $q$ large as a function of $\Delta$, we give a detailed picture of the phase transition of the random cluster model on random $\Delta$-regular graphs. In particular, we determine the limiting distribution of the weights of the ordered and disordered phases at criticality and prove exponential decay of correlations and central limit theorems away from criticality. Our techniques are based on using polymer models and the cluster expansion to control deviations from the ordered and disordered ground states. These techniques also yield efficient approximate counting and sampling algorithms for the Potts and random cluster models on random $\Delta$-regular graphs at all temperatures when $q$ is large. This includes the critical temperature at which it is known the Glauber and Swendsen-Wang dynamics for the Potts model mix slowly. We further prove new slow-mixing results for Markov chains, most notably that the Swendsen-Wang dynamics mix exponentially slowly throughout an open interval containing the critical temperature. This was previously only known at the critical temperature. Many of our results apply more generally to $\Delta$-regular graphs satisfying a small-set expansion condition.
翻译:对于 $Delta 5 ge 5 美元 和 $ $ 5 美元 和 大 $ 美元 的函数 $ delta 5 美元 和 美元 美元 美元 美元, 我们详细描述随机 $ Delta 美元 经常图表 随机集束模型 随机集束模型 的阶段过渡阶段。 特别是, 我们确定关键度定序和无序阶段的重量的有限分布, 并证明相关关系和中值限制离临界度的指数性衰变。 我们的技术基于使用聚合模型和集束扩张来控制与定序和无序地面状态的偏差。 这些技术还产生高效的波茨和随机集束模型的近似计算和抽样算法, 以及随机的 $ Delta 普通图表, $ $ $ q$ 美元 美元 的随机集束模型 。 这包括已知的关键温度, 包括波茨模型混合的Glauber 和 Swendsen- Wang 动态 。 我们进一步证明Markov 链的新缓慢混合结果,, 最显著的Swendsen- wang 混和 包含 关键温度的温度 。 。 。