Consider a graph with nonnegative node weight. A vertex subset is called a CDS (connected dominating set) if every other node has at least one neighbor in the subset and the subset induces a connected subgraph. Furthermore, if every other node has at least $m$ neighbors in the subset, then the node subset is called a $(1,m)$CDS. The minimum-weight $(1,m)$CDS problem aims at finding a $(1,m)$CDS with minimum total node weight. In this paper, we present a new polynomial-time approximation algorithm for this problem with approximation ratio $2H(\delta_{\max}+m-1)$, where $\delta_{\max}$ is the maximum degree of the given graph and $H(\cdot)$ is the Harmonic function, i.e., $H(k)=\sum_{i=1}^k \frac{1}{i}$.


翻译:考虑一个非负节点重量的图形。 如果每个其他节点在子集中至少有一个相邻方, 则顶点子子集称为 CDS (相连接的顶点集) 。 此外, 如果每个其他节点在子集中至少有一个相邻方$, 那么结点子集就被称为$(1, m) $ CDS。 最小重量$(1, m) $ CDS 问题旨在找到一个 $(1, m) $ CDS, 且总结点重量最小。 在本文中, 我们为此问题提出了一个新的多盘点位时近似算法 $ 2H (\ delta\\\\\\\\ max\\ max} $, 其中$\ delta\\ max} 是给定图形的最大程度, $H (\\ ) $ (cdot) 是调理函数, 即 $H (k) sumi=1\\\\\\\\\\\\\\\\\\\\\\\\\ i}美元。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员