We present two protocols for classical verification of quantum depth. Our protocols allow a purely classical verifier to distinguish devices with different quantum circuit depths even in the presence of classical computation. We show that a device with quantum circuit depth at most d will be rejected by the verifier even if the prover applies additional polynomial-time classical computation to cheat. On the other hand, the verifier accepts a device which has quantum circuit depth d' for some d'>d. In our first protocol, we introduce an additional untrusted quantum machine which shares entanglements with the target machine. Applying a robust self-test, our first protocol certifies the depth of the target machine with information theoretic security and nearly optimal separation. The protocol relies on the oracle separation problem for quantum depth by Chia, Chung and Lai [STOC 2020] and a transformation from an oracle separation problem to a two-player non-local game. Our second protocol certifies the quantum depth of a single device based on quantum hardness of learning with errors. The protocol relies on the noisy trapdoor claw-free function family and the idea of pointer chasing to force the prover to keep quantum coherence until all preceding message exchanges are completed. To our knowledge, we give the first constructions for distinguishing hybrid quantum-classical computers with different circuit depths in unrelativized models.
翻译:我们为典型的量子深度核查提出了两个协议。 我们的规程允许纯古典的校验器来区分具有不同量子电路深度的设备, 即使存在古典计算 。 我们显示, 即使校验器应用额外的多元- 时间古典计算来欺骗, 具有量子电深的装置也会被校验者拒绝。 另一方面, 校验器接受一个具有某种 d' 游戏量子电路深度的装置。 在我们的第一项规程中, 我们引入一个额外的不受信任的量子机器, 它将与目标机器的纠结相联。 应用一个强大的自我测试, 我们的第一个规程以信息理论安全和近乎最佳的分离来验证目标机器的深度。 协议依赖于Chia、 Chung 和 Lai [STOC 2020] 的量子深度分解问题。 校验器接受一个具有量子电路深度的装置。 我们的第二个规程验证了一个基于量子硬度学习错误的单一装置的量深度深度。 协议依赖于紧凑的捕捉爪功能, 我们的第一个协议将目标机器的深度证明目标机器的深度, 和最优化的分级的分级的分级交换系统, 直到我们之前的分级的分级的分级的分级的分级的分级的计算, 。