In this paper, I give a concise introduction to a generic theoretical framework termed Bayesian Dynamic Ensemble of Multiple Models (BDEMM), which is used for robust sequential online prediction with time series data. This framework has three major features: (1) it employs a model pool, rather than a single model, to capture possible statistical regularities underlying the data; (2) the model pool consists of multiple weighted candidate models, wherein the model weights are adapted online to capture possible temporal evolutions of the data; (3) the adaptation for the model weights follows Bayesian formalism. These features together define BDEMM. To make this introduction comprehensive, I describe BDEMM from five perspectives, namely the basic theories, its different forms of algorithmic implementations, its applications, its connections to related research, open resources for algorithm implementations, followed by a discussion of practical issues for applying it and some open problems that are worth further research.
翻译:在本文中,我简要地介绍了一个通用理论框架,称为Bayesian动态多模型组合(BDEMMM),用于以时间序列数据进行强有力的连续在线预测,这一框架有三个主要特征:(1) 它使用一个模型集合,而不是单一模型,以记录数据背后可能的统计规律性;(2) 模型集合由多个加权候选模型组成,模型加权数在网上调整,以记录数据可能的时间演变;(3) 模型加权数在Bayesian形式主义之后的调整,这些特征共同定义BDEMM。为了使这一介绍具有全面性,我从五个角度,即基本理论、其不同的算法实施形式、其应用、其与相关研究的联系、用于算法实施的开放资源、随后讨论应用数据的实际问题和值得进一步研究的一些公开问题来描述BDEMM。