In this work we evaluate the applicability of an ensemble of population models and machine learning models to predict the near future evolution of the COVID-19 pandemic, with a particular use case in Spain. We rely solely in open and public datasets, fusing incidence, vaccination, human mobility and weather data to feed our machine learning models (Random Forest, Gradient Boosting, k-Nearest Neighbours and Kernel Ridge Regression). We use the incidence data to adjust classic population models (Gompertz, Logistic, Richards, Bertalanffy) in order to be able to better capture the trend of the data. We then ensemble these two families of models in order to obtain a more robust and accurate prediction. Furthermore, we have observed an improvement in the predictions obtained with machine learning models as we add new features (vaccines, mobility, climatic conditions), analyzing the importance of each of them using Shapley Additive Explanation values. As in any other modelling work, data and predictions quality have several limitations and therefore they must be seen from a critical standpoint, as we discuss in the text. Our work concludes that the ensemble use of these models improves the individual predictions (using only machine learning models or only population models) and can be applied, with caution, in cases when compartmental models cannot be utilized due to the lack of relevant data.


翻译:在这项工作中,我们评估了人口模型和机器学习模型组合的可适用性,以预测COVID-19大流行的近期未来演变情况,西班牙的情况尤为特殊。我们完全依靠开放和公共数据集、发热率、接种疫苗、人类流动和天气数据来充实我们的机器学习模型(兰多姆森林、大动脉、K-Nearest邻居和Kernel Ridge Regrestion)。我们利用事件数据来调整典型的人口模型(贡佩茨、物流、Richards、Bertalanffy),以便能够更好地捕捉数据趋势。然后,我们把这些模型组合起来,以便获得更有力和准确的预测。此外,我们观察到,随着我们增加新的特征(真空、流动性、气候条件),分析每个模型的重要性,我们用这些模型来分析典型的重要性,使用的数据和预测质量有几个局限性,因此必须从一个批评的角度来看待,因为我们在文本中讨论的是,我们用机器学习模型获得的预测,我们的工作结论是,在使用这些模型时只能用这些模型来改进。我们的工作结论是,在学习模型时,在使用这种模型时,只有使用这种模型时才能改进。我们使用。我们的工作结论认为,在使用这些模型的模型的模型中只能用来改进。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
38+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
158+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
38+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
158+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员