Source-free domain adaptation aims to adapt a source model trained on fully-labeled source domain data to a target domain with unlabeled target domain data. Source data is assumed inaccessible due to proprietary or privacy reasons. Existing works use the source model to pseudolabel target data, but the pseudolabels are unreliable due to data distribution shift between source and target domain. In this work, we propose to leverage an ImageNet pre-trained feature extractor in a new co-learning framework to improve target pseudolabel quality for finetuning the source model. Benefits of the ImageNet feature extractor include that it is not source-biased and it provides an alternate view of features and classification decisions different from the source model. Such pre-trained feature extractors are also publicly available, which allows us to readily leverage modern network architectures that have strong representation learning ability. After co-learning, we sharpen predictions of non-pseudolabeled samples by entropy minimization. Evaluation on 3 benchmark datasets show that our proposed method can outperform existing source-free domain adaptation methods, as well as unsupervised domain adaptation methods which assume joint access to source and target data.
翻译:无源域适应旨在将受过全标签源域数据培训的源模型调整为具有无标签目标域数据的目标域。由于专有或隐私原因,假定源数据无法获取源数据。现有工作将源模型用于假标签目标数据,但由于源和目标域之间数据分布的变化,假标签不可靠。在这项工作中,我们提议在一个新的共同学习框架中利用一个图像网预先培训的特性提取器,以提高标的假标签质量,以微调源模型。图像网特性提取器的好处包括它不是源位,它提供了不同于源模型的特征和分类决定的替代视图。这种预先培训的功能提取器也可供公众使用,从而使我们能够随时利用具有很强代表性学习能力的现代网络结构。在共同学习后,我们通过最小化加密来改进对非伪标签样本的预测。对3个基准数据集的评价表明,我们拟议的方法可以超越现有的无源域适应方法,以及假设联合访问源和目标数据的未超标域适应方法。