Have you ever thought that you can be an intelligent painter? This means that you can paint a picture with a few expected objects in mind, or with a desirable scene. This is different from normal inpainting approaches for which the location of specific objects cannot be determined. In this paper, we present an intelligent painter that generate a person's imaginary scene in one go, given explicit hints. We propose a resampling strategy for Denoising Diffusion Probabilistic Model (DDPM) to intelligently compose unconditional harmonized pictures according to the input subjects at specific locations. By exploiting the diffusion property, we resample efficiently to produce realistic pictures. Experimental results show that our resampling method favors the semantic meaning of the generated output efficiently and generates less blurry output. Quantitative analysis of image quality assessment shows that our method produces higher perceptual quality images compared with the state-of-the-art methods.
翻译:您有没有想过自己可以成为一个聪明的画家? 这意味着您可以用一些预期对象来绘画一张图片, 或者用一个合适的场景来画。 这与通常的绘画方法不同, 具体对象的位置无法确定 。 在本文中, 我们展示了一个智能画家, 在一个方向上产生一个人的想象场景, 给出明确的提示 。 我们为 Denoising Difmissulation 概率模型( DDPM) 提出了一个重现策略, 以便根据特定位置输入的题材, 智能地制作无条件的统一图片 。 通过利用扩散属性, 我们有效地复制了真实的图片 。 实验结果显示, 我们的重新标本方法有利于生成输出的语义含义, 并产生更模糊的输出 。 对图像质量评估的定量分析显示, 我们的方法产生比状态的图像质量更高感知质量 。