Detecting out-of-distribution (OOD) inputs is a principal task for ensuring the safety of deploying deep-neural-network classifiers in open-world scenarios. OOD samples can be drawn from arbitrary distributions and exhibit deviations from in-distribution (ID) data in various dimensions, such as foreground semantic features (e.g., vehicle images vs. ID samples in fruit classification) and background domain features (e.g., textural images vs. ID samples in object recognition). Existing methods focus on detecting OOD samples based on the semantic features, while neglecting the other dimensions such as the domain features. This paper considers the importance of the domain features in OOD detection and proposes to leverage them to enhance the semantic-feature-based OOD detection methods. To this end, we propose a novel generic framework that can learn the domain features from the ID training samples by a dense prediction approach, with which different existing semantic-feature-based OOD detection methods can be seamlessly combined to jointly learn the in-distribution features from both the semantic and domain dimensions. Extensive experiments show that our approach 1) can substantially enhance the performance of four different state-of-the-art (SotA) OOD detection methods on multiple widely-used OOD datasets with diverse domain features, and 2) achieves new SotA performance on these benchmarks.
翻译:检测分布区外(OOD)投入是确保在开放世界情景中部署深神经网络分类器安全的主要任务。OOD样本可以从任意分布中提取,并显示与分布区(ID)数据不同的各个方面的数据不同,例如前景色谱特征(例如,车辆图像相对于水果分类中的ID样本)和背景域特征(例如,纹理图像相对于目标识别中的ID样本),现有方法侧重于根据语义特征探测OOD样本,而忽视域特征等其他层面。本文认为OOOD检测中域特征的重要性,并提议利用这些特征加强基于分布区的(ID)数据检测方法。为此,我们提出一个新的通用框架,通过密集的预测方法从ID培训样本中学习域特征。 不同的现有语义特征相对于基于身份特征的样本检测方法可以天衣不缝地结合,共同从语义和域层面(例如域特征)中学习分配区域特征。 广泛进行域域域特征测试,可以大大加强我们四种不同性能的OD方法。</s>