Detecting out-of-distribution (OOD) inputs is a principal task for ensuring the safety of deploying deep-neural-network classifiers in open-world scenarios. OOD samples can be drawn from arbitrary distributions and exhibit deviations from in-distribution (ID) data in various dimensions, such as foreground semantic features (e.g., vehicle images vs. ID samples in fruit classification) and background domain features (e.g., textural images vs. ID samples in object recognition). Existing methods focus on detecting OOD samples based on the semantic features, while neglecting the other dimensions such as the domain features. This paper considers the importance of the domain features in OOD detection and proposes to leverage them to enhance the semantic-feature-based OOD detection methods. To this end, we propose a novel generic framework that can learn the domain features from the ID training samples by a dense prediction approach, with which different existing semantic-feature-based OOD detection methods can be seamlessly combined to jointly learn the in-distribution features from both the semantic and domain dimensions. Extensive experiments show that our approach 1) can substantially enhance the performance of four different state-of-the-art (SotA) OOD detection methods on multiple widely-used OOD datasets with diverse domain features, and 2) achieves new SotA performance on these benchmarks.


翻译:检测分布区外(OOD)投入是确保在开放世界情景中部署深神经网络分类器安全的主要任务。OOD样本可以从任意分布中提取,并显示与分布区(ID)数据不同的各个方面的数据不同,例如前景色谱特征(例如,车辆图像相对于水果分类中的ID样本)和背景域特征(例如,纹理图像相对于目标识别中的ID样本),现有方法侧重于根据语义特征探测OOD样本,而忽视域特征等其他层面。本文认为OOOD检测中域特征的重要性,并提议利用这些特征加强基于分布区的(ID)数据检测方法。为此,我们提出一个新的通用框架,通过密集的预测方法从ID培训样本中学习域特征。 不同的现有语义特征相对于基于身份特征的样本检测方法可以天衣不缝地结合,共同从语义和域层面(例如域特征)中学习分配区域特征。 广泛进行域域域特征测试,可以大大加强我们四种不同性能的OD方法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
11+阅读 · 2022年3月16日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员