In this paper, we study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems. Arjevani et al. (2019) established the lower bound $\Omega\left(\epsilon^{-2/(3p+1)}\right)$ on the number of the $p$-th order oracle calls required by an algorithm to find an $\epsilon$-accurate solution to the problem, where the $p$-th order oracle stands for the computation of the objective function value and the derivatives up to the order $p$. However, the existing state-of-the-art high-order methods of Gasnikov et al. (2019b); Bubeck et al. (2019); Jiang et al. (2019) achieve the oracle complexity $\mathcal{O}\left(\epsilon^{-2/(3p+1)} \log (1/\epsilon)\right)$, which does not match the lower bound. The reason for this is that these algorithms require performing a complex binary search procedure, which makes them neither optimal nor practical. We fix this fundamental issue by providing the first algorithm with $\mathcal{O}\left(\epsilon^{-2/(3p+1)}\right)$ $p$-th order oracle complexity.
翻译:在本文中,我们研究了找到最佳高阶算法以解决平滑的软质最小化问题这一根本的未决问题。 Arjevani等人(2019年)根据一个算法为寻找 $epsilon ⁇ -2(3p+1+1+rright) 问题的精确解决方案而需要的美元顺序调序数,找到最优高阶算法解决平滑的软质最小化问题。 Arjevani 等人(2019年) 将Gasnikov 等人(2019年b); Bubeck等人(2019年); 江等人(2019年) 的当前状态高阶方法设定为较低约束值美元,用于为问题找到 $\psilon$-colon_(2/(3p+1)}\log (1/epslon)\right, 用于计算目标函数值和最高顺序的衍生物源值 $polp$。但是,这些算法要求首先进行复杂的双阶搜索程序, 而不是以最优或最优的方式修正这个序列 。 我们用这个问题来修正 。