Missions to small celestial bodies rely heavily on optical feature tracking for characterization of and relative navigation around the target body. While techniques for feature tracking based on deep learning are a promising alternative to current human-in-the-loop processes, designing deep architectures that can operate onboard spacecraft is challenging due to onboard computational and memory constraints. This paper introduces a novel deep local feature description architecture that leverages binary convolutional neural network layers to significantly reduce computational and memory requirements. We train and test our models on real images of small bodies from legacy and ongoing missions and demonstrate increased performance relative to traditional handcrafted methods. Moreover, we implement our models onboard a surrogate for the next-generation spacecraft processor and demonstrate feasible runtimes for online feature tracking.
翻译:太空任务中,光学特征追踪在小天体的表征和相对导航中起到了至关重要的作用。然而,基于深度学习的特征追踪技术作为当前人机交互过程的有希望的替代方案,由于存在航天器的计算和内存限制,设计能够在航天器上操作的深度学习网络结构是具有挑战性的。本文介绍一种新型的本地特征描述深度架构,利用二值卷积神经网络层显著降低计算和内存要求。我们使用遗留和正在进行的任务的真实小天体图像对模型进行训练和测试,并相对传统手工制作方法展示了更高的性能。此外,我们在下一代航天器处理器的替代品上实现了我们的模型,并展示了在线特征追踪的可行运行时间。