Anomaly detection in MRI is of high clinical value in imaging and diagnosis. Unsupervised methods for anomaly detection provide interesting formulations based on reconstruction or latent embedding, offering a way to observe properties related to factorization. We study four existing modeling methods, and report our empirical observations using simple data science tools, to seek outcomes from the perspective of factorization as it would be most relevant to the task of unsupervised anomaly detection, considering the case of brain structural MRI. Our study indicates that anomaly detection algorithms that exhibit factorization related properties are well capacitated with delineatory capabilities to distinguish between normal and anomaly data. We have validated our observations in multiple anomaly and normal datasets.
翻译:在磁共振成像和诊断中异常检测具有很高的临床价值。未经监督的异常检测方法提供了基于重建或潜伏的有趣配方,提供了观察与因子化有关的属性的途径。我们研究了四种现有的模型方法,并报告了我们使用简单数据科学工具的经验观测结果,以便从因子化的角度寻求结果,因为它与未经监督的异常检测任务最为相关,同时考虑到大脑结构性磁共振的情况。我们的研究显示,显示因子化相关属性的异常检测算法具有很强的分解能力,能够区分正常数据和异常数据。我们已经验证了我们在多个异常和正常数据集中的观测结果。