Safety and resilience are critical for autonomous unmanned aerial vehicles (UAVs). We introduce MAVFI, the micro aerial vehicles (MAVs) resilience analysis methodology to assess the effect of silent data corruption (SDC) on UAVs' mission metrics, such as flight time and success rate, for accurately measuring system resilience. To enhance the safety and resilience of robot systems bound by size, weight, and power (SWaP), we offer two low-overhead anomaly-based SDC detection and recovery algorithms based on Gaussian statistical models and autoencoder neural networks. Our anomaly error protection techniques are validated in numerous simulated environments. We demonstrate that the autoencoder-based technique can recover up to all failure cases in our studied scenarios with a computational overhead of no more than 0.0062%. Our application-aware resilience analysis framework, MAVFI, can be utilized to comprehensively test the resilience of other Robot Operating System (ROS)-based applications and is publicly available at https://github.com/harvard-edge/MAVBench/tree/mavfi.


翻译:安全性和复原力是自主无人驾驶飞行器(无人驾驶飞行器)的关键。我们引入了微型飞行器(MAVFI)抗御能力分析方法,即微型飞行器(MAVFI),以评估无声数据腐败对无人驾驶飞行器飞行任务测量标准(如飞行时间和成功率)的影响,以便准确测量系统的抗御能力。为了提高受大小、重量和功率约束的机器人系统的安全和抗御能力(SWAP),我们提供基于高斯统计模型和自动神经网络的基于异常的SDC检测和恢复算法的两种低端超标检测和算法。我们的异常错误保护技术在许多模拟环境中得到验证。我们证明,基于自动计算器的技术可以恢复到我们所研究的假设情景中的所有故障案例,计算间接率不超过0.0062%。我们的应用抗御能力分析框架(MAVFI)可用于全面测试其他机器人操作系统(ROS)应用的抗御力,并公布在https://github.com/harvad-se/MAVBench/tree/mavfi。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
45+阅读 · 2020年10月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
16+阅读 · 2021年3月2日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员