Automatic lesion segmentation on thoracic CT enables rapid quantitative analysis of lung involvement in COVID- 19 infections. Obtaining voxel-level annotations for training segmentation networks is prohibitively expensive. Therefore we propose a weakly-supervised segmentation method based on dense regression activation maps (dRAM). Most advanced weakly supervised segmentation approaches exploit class activation maps (CAMs) to localize objects generated from high-level semantic features at a coarse resolution. As a result, CAMs provide coarse outlines that do not align precisely with the object segmentations. Instead, we exploit dense features from a segmentation network to compute dense regression activation maps (dRAMs) for preserving local details. During training, dRAMs are pooled lobe-wise to regress the per-lobe lesion percentage. In such a way, the network achieves additional information regarding the lesion quantification in comparison with the classification approach. Furthermore, we refine dRAMs based on an attention module and dense conditional random field trained together with the main regression task. The refined dRAMs are served as the pseudo labels for training a final segmentation network. When evaluated on 69 CT scans, our method substantially improves the intersection over union from 0.335 in the CAM-based weakly supervised segmentation method to 0.495.
翻译:CT 上的自动偏离分解使得能够对肺部参与COVID-19感染的情况进行快速定量分析。 获得培训分解网络的毒理分解水平说明非常昂贵。 因此,我们提议基于密集回归感动地图( RAM) 的微弱监督分解方法。 多数受监督的先进分解方法利用等级活化地图( CAMs) 将高层次语义特征产生的物体定位在粗分辨率上。 因此, CAMs 提供了与对象分解不完全一致的粗粗略轮廓。 相反,我们利用分解网络的稠密特征来计算密度回归感应动图( dramps) 以保存本地细节。 在培训期间, dRAMs 集合了一种不严密的分解方法, 以回归感应回溯回流率为反转率。 这样, 与分类方法相比,我们根据关注模块和经过主要回归任务培训的密集有条件随机字段来改进 dRAMs 。 改良的dRAMs被作为模拟标签, 用于培训C- MIC- MIC- MIC- MILMT 最终分解路路路段 。