The RuNNE Shared Task approaches the problem of nested named entity recognition. The annotation schema is designed in such a way, that an entity may partially overlap or even be nested into another entity. This way, the named entity "The Yermolova Theatre" of type "organization" houses another entity "Yermolova" of type "person". We adopt the Russian NEREL dataset for the RuNNE Shared Task. NEREL comprises news texts written in the Russian language and collected from the Wikinews portal. The annotation schema includes 29 entity types. The nestedness of named entities in NEREL reaches up to six levels. The RuNNE Shared Task explores two setups. (i) In the general setup all entities occur more or less with the same frequency. (ii) In the few-shot setup the majority of entity types occur often in the training set. However, some of the entity types are have lower frequency, being thus challenging to recognize. In the test set the frequency of all entity types is even. This paper reports on the results of the RuNNE Shared Task. Overall the shared task has received 156 submissions from nine teams. Half of the submissions outperform a straightforward BERT-based baseline in both setups. This paper overviews the shared task setup and discusses the submitted systems, discovering meaning insights for the problem of nested NER. The links to the evaluation platform and the data from the shared task are available in our github repository: https://github.com/dialogue-evaluation/RuNNE.


翻译:RuNNE 共享任务处理嵌入命名实体的识别问题。 批注计划的设计方式是, 一个实体可以部分重叠, 甚至嵌入另一个实体。 这样, 名为“ 组织” 的实体“ Yermolova 剧场”, 包含另一个“ 人” 类型的实体“ Yermolova ” 。 我们为 RuNNE 共享任务采用了俄罗斯 NEREL 数据集。 NEREL 包含以俄文撰写的、 从 Wikinews 门户网站收集的新闻文本。 批注计划包括29个实体类型。 NEREL 中命名实体的嵌入性达到6个层次。 RuNERlova 共享任务探索了两个设置。 (一) 在一般设置中, 所有实体都或多或少以相同频率出现。 但是, 一些实体类型中的频率较低, 因而难以识别。 在测试中, 所有实体类型的频率是 甚至。 RuNEURE 共享任务 共享任务中, 共同任务中包含 RuNNE NE 共享任务 任务 共享任务 和共享任务中 共享任务 共享任务的版本 。 共享任务 共享任务集 。 共同任务中, 共同任务 共同任务中 共有任务 共有任务 共有任务 。 共任务 共有任务集 共任务 。 共任务集 共任务 共任务 共任务 共任务 共任务 共任务 共任务 共任务 共任务 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员