Physics-informed Neural Networks (PINNs) have been shown to be effective in solving partial differential equations by capturing the physics induced constraints as a part of the training loss function. This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dynamically propagating these errors over the domain of the solution of the PDE. It also shows how physical regularizations based on continuity criteria and conservation laws fail to address this issue and rather introduce problems of their own causing the deep network to converge to a physics-obeying local minimum instead of the global minimum. We introduce Gaussian Process (GP) based smoothing that recovers the performance of a PINN and promises a robust architecture against noise/errors in measurements. Additionally, we illustrate an inexpensive method of quantifying the evolution of uncertainty based on the variance estimation of GPs on boundary data. Robust PINN performance is also shown to be achievable by choice of sparse sets of inducing points based on sparsely induced GPs. We demonstrate the performance of our proposed methods and compare the results from existing benchmark models in literature for time-dependent Schr\"odinger and Burgers' equations.


翻译:物理知情神经网络(PINNs)通过将物理诱导的制约作为培训损失功能的一部分,在解决部分差异方程式方面证明是有效的。本文表明,PINN对培训数据中的错误十分敏感,并且能在PDE解决方案领域动态传播这些错误,它还表明,基于连续性标准和保护法的物理规范化如何未能解决这一问题,反而引出了其自身的问题,导致深网络与物理观察最低点相融合,而不是全球最低点。我们引入了基于光滑的高斯进程(GP),以恢复PINN的性能,并承诺建立一个强有力的结构,防止测量中的噪音/干扰。此外,我们介绍了一种廉价的方法,根据对GP对边界数据的差异估计来量化不确定性的演变。Robust PINN的性能也表明,根据微弱的诱导的GPs选择几套微分点是能够实现的。我们展示了我们拟议方法的绩效,并比较了基于时间的Schr\\\\\\ Burgers的公式现有文献基准模型的结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年12月30日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员