This paper primarily focuses on computing the Euclidean projection of a vector onto the $\ell_{p}$ ball in which $p\in(0,1)$. Such a problem emerges as the core building block in statistical machine learning and signal processing tasks because of its ability to promote sparsity. However, efficient numerical algorithms for finding the projections are still not available, particularly in large-scale optimization. To meet this challenge, we first derive the first-order necessary optimality conditions of this problem using Fr\'echet normal cone. Based on this characterization, we develop a novel numerical approach for computing the stationary point through solving a sequence of projections onto the reweighted $\ell_{1}$-balls. This method is practically simple to implement and computationally efficient. Moreover, the proposed algorithm is shown to converge uniquely under mild conditions and has a worst-case $O(1/\sqrt{k})$ convergence rate. Numerical experiments demonstrate the efficiency of our proposed algorithm.


翻译:本文主要侧重于计算 $\ ell ⁇ p} $ p\ $ ball 的向量的 Euclide 投影, 以 $ p\ $( 0. 1 ) 美元 。 这个问题是统计机学习和信号处理任务的核心构件, 因为它能够促进空间。 然而, 寻找预测的高效数字算法仍然缺乏, 特别是在大规模优化的情况下。 为了迎接这一挑战, 我们首先使用 Fr\ echet 普通锥体来得出这一问题的第一阶点必要的最佳条件。 基于此特性, 我们开发了一种新的数字方法, 通过在重标值 $\ ell ⁇ 1} $ 球上找到一系列的预测来计算固定点。 这个方法实际上很容易执行, 并且计算有效 。 此外, 拟议的算法显示在温和条件下是独特的, 并且具有最差的 $O1/\ sqrt{k} 集合率 。 。 根据此特性, 我们的数值实验显示了我们提议的算法的效率 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员