Intelligent reflecting surface (IRS) is a promising enabler for next-generation wireless communications due to its reconfigurability and high energy efficiency in improving the propagation condition of channels. In this paper, we consider a large-scale IRS-aided multiple-input-multiple-output (MIMO) communication system in which statistical channel state informa- tion (CSI) is available at the transmitter. By leveraging random matrix theory, we first derive a deterministic approximation (DA) of the ergodic rate with low computation complexity and prove the existence and uniqueness of the DA parameters. Then, we propose an alternating optimization algorithm to obtain a locally optimal solution for maximizing the DA with respect to phase shifts and signal covariance matrices. Numerical results will show that the DA is tight and our proposed method can improve the ergodic rate effectively.


翻译:智能反射表面(IRS)是下一代无线通信的一个大有希望的推进器,因为它在改善频道传播条件方面具有可调和性和高能效。 在本文中,我们考虑了一个大规模IRS辅助的多投入多输出(MIIMO)通信系统,在该系统中,发射机可以使用统计频道状态信息(CSI)。我们利用随机矩阵理论,首先得出了计算复杂度低且证明DA参数存在和独特性的确定性近似值(DA),然后,我们提出了一种交替优化算法,以获得一个当地最佳的解决方案,使DA在相移和信号共变矩阵方面最大化。数字结果将显示DA是紧凑的,我们提出的方法可以有效地提高ERGed率。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员