This paper is concerned with the numerical stability of time fractional delay differential equations (F-DDEs) based on Gr\"{u}nwald-Letnikov (GL) approximation (also called fraction backward Euler scheme) for the Caputo fractional derivative, in particular, the numerical stability region and the Mittag-Leffler stability. Using the boundary locus technique, we first derive the exact expression of the numerically stability region in the parameter plane, and show that the fractional backward Euler scheme based on GL scheme is not $\tau(0)$-stable, which is different from the backward Euler scheme for integer DDE models. Secondly, we also prove the numerical Mittag-Leffler stability for the numerical solutions provided that the parameters fall into the numerical stability region, by employing the singularity analysis of generating function. Our results show that the numerical solutions of F-DDEs are completely different from the classical integer order DDEs, both in terms of $\tau(0)$-stabililty and the long-time decay rate.
翻译:本文关注基于 Gr\"{u}nwald- Letnikov (GL) 的Caputo 分解衍生物(特别是数字稳定性区域和Mittag-Leffler稳定性)基于 Gr\"{{{{{{{{{}}nwald-Letnikov (GL) 的分数延迟差方程(F-DDEs) 的数值稳定性。 我们首先用边框技术来得出参数平面中数字稳定性区域的确切表达法, 并显示基于 GL 方案的分数后退 Euler 方案不是$\tau( 0)$- sable, 这与整数 DDE 的后退 Euler 方案不同。 其次, 我们还通过使用生成函数的单数性分析, 来证明数值稳定区域参数的数值, 也证明了Mittag-Leffler 的数值解决方案的稳定性。 我们的结果表明, F- DDE 的数值解决方案与经典整数级顺序DDE 完全不同, 以 $(0) 和长期衰减率计算。