Eigensolvers involving complex moments can determine all the eigenvalues in a given region in the complex plane and the corresponding eigenvectors of a regular linear matrix pencil. The complex moment acts as a filter for extracting eigencomponents of interest from random vectors or matrices. This study extends a projection method for regular eigenproblems to the singular nonsquare case, thus replacing the standard matrix inverse in the resolvent with the pseudoinverse. The extended method involves complex moments given by the contour integrals of generalized resolvents associated with nonsquare matrices. We establish conditions such that the method gives all finite eigenvalues in a prescribed region in the complex plane. In numerical computations, the contour integrals are approximated using numerical quadratures. The primary cost lies in the solutions of linear least squares problems that arise from quadrature points, and they can be readily parallelized in practice. Numerical experiments on large matrix pencils illustrate this method. The new method is more robust and efficient than previous methods, and based on experimental results, it is conjectured to be more efficient in parallelized settings. Notably, the proposed method does not fail in cases involving pairs of extremely close eigenvalues, and it overcomes the issue of problem size.
翻译:包含复杂时间的 Eigensovers 能够确定复杂平面中某一区域的所有元素值, 以及正常线性矩阵铅笔的相应元素值。 复杂时刻是一个过滤器, 用来从随机矢量或矩阵中提取有兴趣的元素。 本研究将常规元素蛋白质的预测方法扩展至单非方形情况, 从而将标准矩阵表表表与固态反换成假反形。 扩展的方法涉及与非正方形矩阵相关的普遍溶液的等离子体整体体给定出的复杂时刻。 我们建立这样的条件, 使该方法在复杂平面中给指定区域带来所有限定的元素值。 在数字计算中, 等离子元元组成部分是使用数字方形的近似值。 主要成本在于由二次曲线点产生的线性最小方问题的解决方案, 并且可以在实际中很容易地平行使用。 大矩阵铅笔上的数值实验实验实验显示这个方法比以前的方法更加坚固和高效。 基于实验结果, 并且根据实验结果, 在数值计算中, 等值的模型中, 它的平行值组合是 。 与 高度的 问题 。