项目名称: 集成石墨烯的太赫兹有源超材料电磁特性及可控功能器件研究

项目编号: No.61307128

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 司黎明

作者单位: 北京理工大学

项目金额: 26万元

中文摘要: 太赫兹技术的突破必然依赖新理论、新材料和新工艺的应用。超材料可以弥补传统自然界材料电磁参数分布窄、可控范围小的缺陷,因而拥有传统材料无法显现的电磁特性。基于超材料的电磁功能器件较传统材料构成的器件无论是在工作频率覆盖范围还是功能特性都具有更大优势。进一步,通过将有源器件或可控材料嵌入到无源超材料中,使其电磁特性参数可以随外加激励的变化而改变,从而获得具有频率捷变、色散可控、损耗补偿甚至净增益的有源超材料,是实现太赫兹波可控功能器件的一个有效途径。通过调节外加电场、磁场或电压,石墨烯可表现出常温 下的太赫兹频段动态电导率、负微分电阻等特性,可被有效地用作设计太赫兹有源器件和可控材料。本项目提出利用石墨烯在常温下太赫兹频段的动态电导率和负微分电阻特性研究太赫兹有源超材料,并将该集成石墨烯的太赫兹有源超材料应用于太赫兹波可控功能器件设计,如太赫兹电控传输线、波束扫描天线、调制器等。

中文关键词: 超材料;太赫兹波;电磁波;;

英文摘要: The evolution of modern terahertz (THz) technology relies on the application of new theories, novel materials, as well as advanced manufacturing processes. Metamaterials are artificially composite materials, offering unique electric and/or magnetic responses do not normally exist in natural materials. Metamaterials-based electromagnetic functional devices have been recognized with the advantages both in the operating frequency range and the performances. Moreover, by incorporating active devices or controllable media into metamaterials, one can realize active metamaterials which may possess frequency-agile, controllable dispersion, loss compensation or even net gain, providing a powerful way for designing THz controllable functional devices. Owing to the unique electric characteristics at room temperature, such as the dynamic conductivity and the negative differential resistance, graphene is a particularly suitable material for the THz active devices or controllable media, through adjusting external stimulus such as electric field, magnetic field, or voltage. This project aims to develop and implement a novel type of THz active metamaterial by incorporating graphene with a dynamic conductivity and a negative differential resistance. Such graphene-incorporated THz active metamaterial could enable novel applicatio

英文关键词: Metamaterial;Terahertz;electromagnetic wave;;

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
28+阅读 · 2020年8月8日
2799 元起,iQOO Neo6 发布!
ZEALER订阅号
0+阅读 · 2022年4月13日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
iQOO 9 Pro 上手体验:全面进化,性能旗舰
ZEALER订阅号
0+阅读 · 2022年1月5日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关主题
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员