Generative models are becoming ever more powerful, being able to synthesize highly realistic images. We propose an algorithm for taming these models - changing the probability that the model will produce a specific image or image category. We consider generative models that are powered by normalizing flows, which allows us to reason about the exact generation probability likelihood for a given image. Our method is general purpose, and we exemplify it using models that generate human faces, a subdomain with many interesting privacy and bias considerations. Our method can be used in the context of privacy, e.g., removing a specific person from the output of a model, and also in the context of de-biasing by forcing a model to output specific image categories according to a given target distribution. Our method uses a fast fine-tuning process without retraining the model from scratch, achieving the goal in less than 1% of the time taken to initially train the generative model. We evaluate qualitatively and quantitatively, to examine the success of the taming process and output quality.
翻译:生成模型变得越来越强大, 能够合成高度现实的图像。 我们建议了一种方法来调制这些模型 — 改变模型产生特定图像或图像类别的概率。 我们考虑的是由正常流程驱动的基因模型, 从而使我们能够解释给定图像的准确生成概率。 我们的方法是通用的, 我们用模型来展示它, 模型产生人的脸, 一个包含许多有趣的隐私和偏见考虑的子领域。 我们的方法可以在隐私的背景下使用, 比如, 将某个特定的人从模型的输出中去除, 也可以在通过强制模型根据特定目标分布输出特定图像类别来降低偏差的背景下使用。 我们的方法使用快速的微调过程, 而不从零开始再对模型进行再培训, 在最初培训基因化模型所花时间的不到1%的时间里实现这个目标。 我们从质量和数量上评估了调控过程和输出质量的成功程度。