In this article, we propose a Frozen Gaussian Sampling (FGS) algorithm for simulating nonadiabatic quantum dynamics at metal surfaces with a continuous spectrum. This method consists of a Monte-Carlo algorithm for sampling the initial wave packets on the phase space and a surface-hopping type stochastic time propagation scheme for the wave packets. We prove that to reach a certain accuracy threshold, the sample size required is independent of both the semiclassical parameter $\varepsilon$ and the number of metal orbitals $N$, which makes it one of the most promising methods to study the nonadiabatic dynamics. The algorithm and its convergence properties are also validated numerically. Furthermore, we carry out numerical experiments including exploring the nuclei dynamics, electron transfer and finite-temperature effects, and demonstrate that our method captures the physics which can not be captured by classical surface hopping trajectories.
翻译:在此篇文章中,我们建议使用一个Frozen Gaussian 抽样算法(FGS)来模拟金属表面连续频谱的非非非非非非非非亚量子动态。 这种方法包括用于在相位空间对初始波包进行取样的蒙特- 卡洛算法和用于波段包的地表选择型随机时间传播方案。 我们证明,要达到一定的精度阈值, 所需的样本大小独立于半古典参数$\varepsilon$和金属轨道数$N$, 这使得它成为研究非非非非亚性动态的最有希望的方法之一。 算法及其趋同特性也在数字上得到验证。 此外, 我们进行数字实验, 包括探索核动态、 电转移和有限温度效应, 并证明我们的方法捕捉到古典地表截轨迹无法捕捉到的物理。