We study a non-local optimal control problem involving a linear, bond-based peridynamics model. In addition to existence and uniqueness of solutions to our problem, we investigate their behavior as the horizon parameter $\delta$, which controls the degree of nonlocality, approaches zero. We then study a finite element-based discretization of this problem, its convergence, and the so-called asymptotic compatibility as the discretization parameter $h$ and the horizon parameter $\delta$ tend to zero simultaneously.
翻译:-
关于线性Peridynamics模型的最优控制问题
摘要:
我们研究一个涉及线性、基于连结的Peridynamics模型的非局部最优控制问题。除了我们问题的解的存在性和唯一性外,我们还研究了它们随着控制参数$\delta$ (该参数控制的非局部程度)趋近于零时的行为。然后我们研究了这个问题的基于有限元的离散化方法,它的收敛性以及作为离散化参数$h$和视界参数$\delta$一起趋向于零的所谓渐近兼容性。