We develop a new method to find the number of volatility regimes in a nonstationary financial time series by applying unsupervised learning to its volatility structure. We use change point detection to partition a time series into locally stationary segments and then compute a distance matrix between segment distributions. The segments are clustered into a learned number of discrete volatility regimes via an optimization routine. Using this framework, we determine a volatility clustering structure for financial indices, large-cap equities, exchange-traded funds and currency pairs. Our method overcomes the rigid assumptions necessary to implement many parametric regime-switching models, while effectively distilling a time series into several characteristic behaviours. Our results provide significant simplification of these time series and a strong descriptive analysis of prior behaviours of volatility. This empirical analysis could be used with other regime-switching implementations, justifying the parametric structure encoded in any candidate model. Finally, we create and validate a dynamic trading strategy that learns the optimal match between the current distribution of a time series and its past regimes, thereby making online risk-avoidance decisions in the present.
翻译:我们开发了一种新的方法,在非静止金融时间序列中寻找波动制度的数量,方法是对其波动结构进行不受监督的学习。我们使用变化点探测方法,将时间序列分成局部固定部分,然后计算区块分布之间的距离矩阵。通过优化常规,将这些部分分组成一系列已知的离散波动制度。我们利用这一框架,为金融指数、大额股票、汇率交易基金和货币对子确定波动性组合结构。我们的方法克服了实施许多参数系统转换模型所必需的僵硬假设,同时有效地将时间序列转化为几种典型行为。我们的结果大大简化了这些时间序列,并对先前的波动行为进行了有力的描述性分析。这一经验分析可用于其他系统转换执行,为任何候选模型编码的参数结构提供理由。最后,我们创建并验证了动态交易战略,以学习时间序列当前分布与其过去制度的最佳匹配,从而在目前网上作出避免风险的决定。