This paper develops the theory of discrete Dirac reduction of discrete Lagrange-Dirac systems with an abelian symmetry group acting on the configuration space. We begin with the linear theory and, then, we extend it to the nonlinear setting using retraction compatible charts. We consider the reduction of both the discrete Dirac structure and the discrete Lagrange-Pontryagin principle, and show that they both lead to the same discrete Lagrange-Poincar\'e-Dirac equations. The coordinatization of the discrete reduced spaces relies on the notion of discrete connections on principal bundles. At last, we demonstrate the method obtained by applying it to a charged particle in a magnetic field, and to the double spherical pendulum.
翻译:本文开发了离散的拉格朗- 德拉克系统离散 Dirac 减少离散的理论, 在配置空间上运行一个亚伯兰对称组。 我们从线性理论开始, 然后, 我们用撤回兼容的图表将它扩大到非线性设置。 我们考虑了离散的德拉克结构的缩小和离散的拉格朗- 庞特里加金原则, 并表明它们都会导致相同的离散的拉格朗- 波因卡尔- e- 德拉克方程式。 离散的缩小空间的coorddinat化取决于主包的离散连接概念。 最后, 我们演示了将它应用于磁场中充电颗粒和双球状圆形中的方法 。